Processing math: 0%

Pages

21 September, 2018

On two equivalent definitions of divergence

This is my answer to a question that was asked on math.SE, by someone who needed clarification on the limit-integral definition of the divergence operator. There is a lot to talk about, so I thought I would post a complete version of it here.

Let's put it this way. Suppose you have defined the divergence as a differential operator: that is, for a general function \mathbf f : A \to \mathbb R^n, where A is a subset of \mathbb R^n, and for \mathbf x_0 \in A \setminus \partial A at which \mathbf f is differentiable, let the divergence of \mathbf f at \mathbf x_0 be defined as the real number \operatorname{div} \mathbf f (\mathbf x_0) := \operatorname{tr} \mathsf D^1\mathbf f(\mathbf x_0) = \sum_{i=1}^n \frac{\partial f_i}{\partial x_i}(\mathbf x_0), \tag1 where \mathsf D^1\mathbf f(\mathbf x_0) is the Jacobian matrix of \mathbf f at \mathbf x_0 and \operatorname{tr} indicates the trace operator.

Then the following theorem holds:
Theorem 1. Let \Omega be an open subset of \mathbb R^n, and let \mathbf f : \Omega \to \mathbb R^n be of class \mathcal C^1. Suppose furthermore that \mathbf x_0 \in \Omega, and \{A_k\}_{k \in \mathbb N} is a sequence of subsets of \Omega such that
  1. For all k, A_k is a regular open set (see below);
  2. For all k, A_k contains the point \mathbf x_0;
  3. For all \varepsilon>0 there is an index k \in \mathbb N such that \operatorname{diam} A_k < \varepsilon — or, equivalently,\lim_{k\to\infty} \operatorname{diam}A_k = 0.
Then, if \hat{\mathbf n}_k : \partial A_k \to \mathbb R^n is the function associating, to each point of \partial A_k, the unit normal vector pointing outward w.r.t. A_k, the limit \lim_{k\to \infty} \frac{1}{\operatorname{vol}_n A_k } \int_{\partial A_k} \mathbf f \cdot \hat{\mathbf n}_k \mathop{}\!da \tag2 exists in \mathbb R and its value is \operatorname{div} \mathbf f(\mathbf x_0).

By \operatorname{diam}A_k we mean the diameter of the set A_k, i.e. the greatest possible distance between two points in the closure of A_k: \operatorname{diam} A_k := \sup_{\mathbf x, \mathbf y \in A_k} |\mathbf x-\mathbf y|; also by \operatorname{vol}_n we mean the n-dimensional standard measure defined on \mathbb R^n. For n = 3 we're dealing with the usual notion of volume.

By regular open set we mean that A_k should have a "nice" border, i.e. that \partial A_k should be a (n-1)-dimensional compact manifold of certain regularity (otherwise we will have problems defining the outward unit normal function \hat{\mathbf n}_k). More precisely, for an open set U \subseteq \mathbb R^n to be regular, we require that it be bounded, and that for all \mathbf x_0 \in \partial U there exist a neighborhood I of \mathbf x_0, a neighborhood J of the origin of \mathbb R^n, and a bijection \mathbf r : J \to I of class at least \mathcal C^1 such that
  1. \mathbf r^{-1} : I \to J is of the same regularity as \mathbf r;
  2. I \cap  U = \mathbf r(J \cap \mathbb R^n_+);
  3. I \cap \partial U = \mathbf r(J \cap \partial \mathbb R^n_+);
  4. I \setminus \overline{U} = \mathbf r(J \setminus \overline{\mathbb R^n_+}).
Of course, by \mathbb R^n_+ we mean the (open) region of \mathbb R^n where x^n > 0 (or for that matter any other one of the coordinates in place of x^n); this is also called the n-dimensional upper half-space.

There is also a useful characterization of these regular open sets:
Proposition 2. A bounded open set U \subset \mathbb R^n is regular if and only if there exists a function g : \mathbb R^n \to \mathbb R that is at least of class \mathcal C^1, that verifies \begin{split} U &= \{\mathbf x \in \mathbb R^n\ |\ g(\mathbf x) < 0 \}, \\ \partial U &= \{ \mathbf x \in \mathbb R^n\ |\ g(\mathbf x) = 0\}, \\ \mathbb R^n \setminus \overline U &= \{\mathbf x \in \mathbb R^n\ |\ g(\mathbf x) > 0\}, \end{split} and is such that \nabla g(\mathbf x) \neq \mathbf 0 for all \mathbf x \in \partial U.

Of course, that famous theorem which states that contour lines of regular functions can only be locally parametrized by maps of the same regularity prevents the border \partial U from having any "sharp edges" or "corners" or other similar singular portions. That is why smooth balls are usually employed as the prototypical choice of A_k.1

As an exercise: try to rewrite the statement of the theorem above by replacing the (discrete) sequence \{A_k\}_{k\in\mathbb N} with the (continuous) family of open balls \{B_{\varepsilon}(\mathbf x_0)\}_{\varepsilon > 0}. (Spoiler: it becomes much simpler.)



Addendum. For completeness, I thought I'd add the proof to Theorem 1 presented above, in the case where n=3 and the ever smaller sets are ball-shaped: for \mathbf x_0 \in \Omega, we set A_k = B_{\varepsilon_k}(\mathbf x_0) = \{ \mathbf x \in \mathbb R^3\ |\ |\mathbf x - \mathbf x_0| < \varepsilon_k \}, \quad \text{with} \quad \varepsilon_k \xrightarrow{k\to\infty} 0^+.
Let us rewrite the statement of the theorem for this special case:
Theorem 1a. Let \Omega be an open subset of \mathbb R^3, and let \mathbf f : \Omega \to \mathbb R^3 be of class \mathcal C^1. Suppose furthermore that \mathbf x_0 \in \Omega. Then the limit
\lim_{\varepsilon \to 0^+} \frac{1}{\operatorname{vol} B_\varepsilon(\mathbf x_0)} \int_{\partial B_\varepsilon (\mathbf x_0)} \mathbf f(\mathbf x) \cdot \hat{\mathbf n}_\varepsilon(\mathbf x) \mathop{}\!da \tag{2a} exists in \mathbb R and its value is \operatorname{div}\mathbf f(\mathbf x_0).

Proof. As \mathbf f is of class \mathcal C^1 over the open set \Omega, it is differentiable at all its points (due to a standard theorem in analysis). Because of this, we may surely expand \mathbf f(\mathbf x) to first order: \mathbf f(\mathbf x) = \mathbf f(\mathbf x_0) + [\mathsf D^1\mathbf f(\mathbf x_0)](\mathbf x -\mathbf x_0) + |\mathbf x - \mathbf x_0|\mathbf q(\mathbf x - \mathbf x_0), \tag3 where \mathbf q is a function such that \lim_{\mathbf h \to \mathbf 0} \mathbf q(\mathbf h) = \mathbf 0. Let us set D(\varepsilon) := \frac{1}{\operatorname{vol} B_\varepsilon(\mathbf x_0)} \int_{\partial B_\varepsilon (\mathbf x_0)} \mathbf f(\mathbf x) \cdot \hat{\mathbf n}_\varepsilon(\mathbf x) \mathop{}\!da. and let \varepsilon > 0. Substituting our expansion (3) into (2\text a) yields, when B_\varepsilon(\mathbf x_0) \subseteq \Omega, \begin{split} D(\varepsilon) &= \frac{1}{\operatorname{vol} B_\varepsilon(\mathbf x_0)}  \int_{\partial B_\varepsilon(\mathbf x_0)} \mathbf f(\mathbf x_0) \cdot \hat{\mathbf n}_\varepsilon(\mathbf x) \mathop{}\!da \\ &\quad + \frac{1}{\operatorname{vol} B_\varepsilon(\mathbf x_0)}  \int_{\partial B_\varepsilon(\mathbf x_0)} [\mathsf D^1\mathbf f(\mathbf x_0)](\mathbf x -\mathbf x_0)  \cdot \hat{\mathbf n}_\varepsilon(\mathbf x) \mathop{}\!da \\ &\quad + \frac{\varepsilon}{\operatorname{vol} B_\varepsilon(\mathbf x_0)}  \int_{\partial B_\varepsilon(\mathbf x_0)} \mathbf q(\mathbf x -\mathbf x_0)  \cdot \hat{\mathbf n}_\varepsilon(\mathbf x) \mathop{}\!da, \end{split} \tag4 where we have tacitly substituted |\mathbf x-\mathbf x_0| = \varepsilon in the last integral, since it is performed on the surface of the ball. Let us now evaluate each integral, marking each of them as J_k(\varepsilon), k=1,2,3.

Notice that \hat{\mathbf n}_\varepsilon is an odd function, i.e. \hat{\mathbf n}_\varepsilon(-\mathbf x) = -\hat{\mathbf n}_\varepsilon(\mathbf x), \quad \forall \mathbf x \in \partial B_\varepsilon(\mathbf x_0); hence the integrand \mathbf f(\mathbf x_0) \cdot \hat{\mathbf n}_\varepsilon of J_1(\varepsilon) is also odd, and since the domain \partial B_\varepsilon(\mathbf x_0) is symmetric about the origin, we may conclude that J_1(\varepsilon) = 0.
Moreover, by Schwarz's inequality, \mathbf q(\mathbf x - \mathbf x_0) \cdot \hat{\mathbf n}_\varepsilon(\mathbf x) \leq |\mathbf q(\mathbf x - \mathbf x_0)| | \hat{\mathbf n}_\varepsilon(\mathbf x )|, so that by applying a few common properties of integrals we obtain \begin{split} |J_3(\varepsilon)| &= \left| \frac{\varepsilon}{\operatorname{vol} B_\varepsilon(\mathbf x_0)}  \int_{\partial B_\varepsilon(\mathbf x_0)} \mathbf q(\mathbf x -\mathbf x_0)  \cdot \hat{\mathbf n}_\varepsilon(\mathbf x)\ \mathop{}\!da \right| \\ &\leq \frac{\varepsilon}{\operatorname{vol} B_\varepsilon(\mathbf x_0)} \int_{\partial B_\varepsilon(\mathbf x_0)} \Big| \mathbf q(\mathbf x -\mathbf x_0)  \cdot \hat{\mathbf n}_\varepsilon(\mathbf x) \Big| \mathop{}\!da \\ &\leq \frac{\varepsilon}{\operatorname{vol} B_\varepsilon(\mathbf x_0)} \int_{\partial B_\varepsilon(\mathbf x_0)} | \mathbf q(\mathbf x -\mathbf x_0)|  | \hat{\mathbf n}_\varepsilon(\mathbf x) | \mathop{}\!da \\ &= \frac{\varepsilon}{\operatorname{vol} B_\varepsilon(\mathbf x_0)} \int_{\partial B_\varepsilon(\mathbf x_0)} | \mathbf q(\mathbf x -\mathbf x_0)| \mathop{}\!da \\ &\leq \frac{\varepsilon \operatorname{area} \partial B_\varepsilon(\mathbf x_0)}{\operatorname{vol} B_\varepsilon(\mathbf x_0)} \sup_{\mathbf x \in \partial B_\varepsilon(\mathbf x_0)} | \mathbf q(\mathbf x -\mathbf x_0)|.  \\ \end{split} Therefore, since \operatorname{vol} B_\varepsilon(\mathbf x_0) = \frac 4 3 \pi \varepsilon^3, \qquad \operatorname{area} \partial B_\varepsilon(\mathbf x_0) = 4\pi \varepsilon^2, we may conclude that |J_3(\varepsilon)| \leq 3  \sup_{\mathbf x \in \partial B_\varepsilon(\mathbf x_0)} | \mathbf q(\mathbf x -\mathbf x_0)|, and since \mathbf q is infinitesimal as \mathbf x \to \mathbf x_0, this quantity will disappear as we let \varepsilon \to 0.

Turning to J_2, we see that for all \mathbf x \in \partial B_\varepsilon(\mathbf x_0), \hat{\mathbf n}_\varepsilon(\mathbf x) =  \frac{\mathbf x - \mathbf x_0}{|\mathbf x - \mathbf x_0|} = \frac{\mathbf x - \mathbf x_0}{\varepsilon}, so that we may write \begin{split} J_2(\varepsilon) &= \frac{1}{\varepsilon\operatorname{vol} B_\varepsilon(\mathbf x_0)}  \int_{\partial B_\varepsilon(\mathbf x_0)} [\mathsf D^1\mathbf f(\mathbf x_0)](\mathbf x -\mathbf x_0)  \cdot (\mathbf x - \mathbf x_0) \mathop{}\!da  \\ &= \frac{1}{\varepsilon\operatorname{vol} B_\varepsilon(\mathbf x_0)}  \int_{\partial B_\varepsilon(\mathbf x_0)} (\mathbf x - \mathbf x_0)^\top[\mathsf D^1\mathbf f(\mathbf x_0)](\mathbf x -\mathbf x_0)  \mathop{}\!da.   \end{split} With the substitution \boldsymbol \xi = (\mathbf x - \mathbf x_0), the integrand may be fully expanded as a double sum (\mathbf x - \mathbf x_0)^\top[\mathsf D^1\mathbf f(\mathbf x_0)](\mathbf x -\mathbf x_0) = \sum_{i,j=1}^3 \frac{\partial f_i}{\partial x_j}(\mathbf x_0) \xi_i \xi_j,    so that J_2(\varepsilon) = \frac{1}{\varepsilon\operatorname{vol} B_\varepsilon(\mathbf x_0)} \sum_{i,j=1}^3 \frac{\partial f_i}{\partial x_j}  \int_{\partial B_\varepsilon(\mathbf 0)} \xi_i \xi_j  \mathop{}\!da.\tag5

The issue is now reduced to calculating this last integral. First, we notice that the integrand function \varphi_{ij} satisfies this symmetry property: if \mathbf s_i : \mathbb R^3 \to \mathbb R^3 is the linear transformation sending \xi_i \mapsto -\xi, while \xi_j \mapsto \xi_j for all j \neq i, then \varphi_{ij}(\mathbf s_i(\boldsymbol \xi)) = -(\xi_i\xi_j) = -\varphi_{ij}(\boldsymbol \xi).  Furthermore, the transformation \mathbf s_i is a reflection through the plane normal to the \xi_i-axis, so the domain of integration \partial B_\varepsilon(\mathbf 0) is left unchanged; therefore, \int_{\partial B_\varepsilon(\mathbf 0)} \xi_i\xi_j \mathop{}\!da = 0, \quad \forall i \neq j. The more interesting case is when i=j: the integrals \int_{\partial B_\varepsilon(\mathbf 0)} \xi_1^2 \mathop{}\!da, \quad \int_{\partial B_\varepsilon(\mathbf 0)} \xi_2^2 \mathop{}\!da, \quad \int_{\partial B_\varepsilon(\mathbf 0)} \xi_1^3 \mathop{}\!da all have the same value, because the sphere \partial B_\varepsilon (\mathbf 0) is left unchanged by the transformations swapping \xi_i with \xi_j for i\neq j, which turn one of the above integrands into another. By the linearity property of integrals, we may write \begin{split}\int_{\partial B_\varepsilon(\mathbf 0)} \xi_1^2 \mathop{}\!da + \int_{\partial B_\varepsilon(\mathbf 0)} \xi_2^2 \mathop{}\!da + \int_{\partial B_\varepsilon(\mathbf 0)} \xi_3^2 \mathop{}\!da &= \int_{\partial B_\varepsilon(\mathbf 0)} (\xi_1 + \xi_2 + \xi_3)^2 \mathop{}\!da  \\ &= \int_{\partial B_\varepsilon(\mathbf 0)} \varepsilon^2 \mathop{}\!da = \varepsilon^2(4\pi\varepsilon^2),\end{split} and thus \int_{\partial B_\varepsilon(\mathbf 0)} \xi_i^2 \mathop{}\!da = \frac 1 3 \varepsilon^2(4\pi\varepsilon^2) = \varepsilon \frac 4 3 \pi \varepsilon^3 = \varepsilon \cdot \operatorname{vol} B_\varepsilon(\mathbf 0), \quad i = 1,2,3.

All in all, \int_{\partial B_\varepsilon(\mathbf 0)} \xi_i \xi_j  \mathop{}\!da = \varepsilon \cdot \operatorname{vol} B_\varepsilon(\mathbf 0) \delta_{ij}, \quad \forall i,j = 1,2,3. \tag6  From (6) we desume that the double sum in (5) may be reduced to a single sum "over the diagonal": \begin{split}J_2(\varepsilon) &= \frac{1}{\varepsilon\operatorname{vol} B_\varepsilon(\mathbf x_0)} \sum_{i,j=1}^3 \frac{\partial f_i}{\partial x_j}  \varepsilon \cdot \operatorname{vol} B_\varepsilon(\mathbf 0) \delta_{ij} \\ &= \frac{1}{\varepsilon\operatorname{vol} B_\varepsilon(\mathbf x_0)} \sum_{i=1}^3 \frac{\partial f_i}{\partial x_i}  \varepsilon \cdot \operatorname{vol} B_\varepsilon(\mathbf 0),  \end{split} and the equality \operatorname{vol} B_\varepsilon(\mathbf 0)= \operatorname{vol} B_\varepsilon(\mathbf x_0) finally yields J_2(\varepsilon) = \sum_{i=1}^3 \frac{\partial f_i}{\partial x_i} = \operatorname{tr} \mathsf D^1\mathbf f(\mathbf x_0) = \operatorname{div} \mathbf f(\mathbf x_0).

Going back to (4), we see that for our arbitrary choice of \varepsilon > 0 we have obtained
D(\varepsilon) = 0 + J_2(\varepsilon) + J_3(\varepsilon) =  \operatorname{div} \mathbf f(\mathbf x_0) + J_3(\varepsilon); \tag7 since we had established that J_3(\varepsilon) \xrightarrow{\varepsilon\to 0^+} 0, taking the limit in (7) yields \lim_{\varepsilon \to 0^+} D(\varepsilon) = \operatorname{div} \mathbf f(\mathbf x_0),  as we wanted to show. \blacksquare

Final note: it is possible to justify the derivation of (6) more precisely in terms of Darboux sums. We will do so in a future post.


1 It is however possible to consider a slightly larger class of subsets A_k, for example by allowing \partial A_k to be the union of a finite collection of compact (n-1)-manifolds, and the integral over \partial A_k to be calculated as the sum of the integrals over these regular components. This enables us to define the divergence in terms of integrals over shrinking cubes or other polyhedra.

No comments:

Post a Comment